Fuel for Thought: How Fuel Treatments Tame the Flames

UBC Forestry

Dr. Lori Daniels, Tessa Black, Matthew Broder, Fiona Landwehr, Caleb Loewen, Issac Lowenthal Walsh, Daniel Skinner, Mike Stefanuk UBC is on the Ancestral Lands of the x^wməθk^wəy'əm s<u>kwx</u>wú7mesh & səlilwətal

Cheakamus Community Forest December 3, 2024

29 JUNE

EMPERATUR

2021 Heat Dome & Wildfires in BC

1 in 1000-year event, 150x less likely without climate change Philip et al. 2021, Earth System Dynamics

2023 Wildfires in Canada 15M ha burned, releasing 410 MT of C

Great Slave Lake

Yellowknife

MAY 2023

ANOMAL

Wildfires in BC 1919 - 2023

Parisien et al. 2023 Nature Communications Earth & Environment Daniels et al. 2024 Canadian Journal of Forest Research

"Wildfire Behaviour Triangle" fire type, intensity, rate of spread, severity, effects

"Wildfire Behaviour Triangle"

Topography includes elevation, steepness + aspect of slopes.

"Wildfire Behaviour Triangle" Weather varies continually, influencing fire danger

FIRE DANGER TODAY

BC Wildfire Service

The Weather Channel

"Wildfire Behaviour Triangle"

Fuels vary among forests and change through time as trees grow and forests change after disturbance

Of the three axes, we have the greatest control over fuels.

Proactive Fuel Treatments: Mitigate Fire Risk

Proactive Fuel Treatments: Mitigate Fire Risk

Treatment goals: ↓ surface fire intensity ↓ active crown fire ↑ fire resilience

Fuels mitigation:
 ↓ tree density
 ↓ surface fuels
 ↑ height to live crown

Assessing efficacy: Field measures + Fire behaviour models

Assessing Treatments: Fire Behaviour Modelling

ullet

ullet

Topography

- location
- elevation
- slope aspect
- slope angle

Weather

- 90th percentile
- 29.6 °C
- 24% RH
 - 13.1 kph winds

Fuels

- tree diameter, height, branch height
- forest cover and density
- calculate canopy fuel abundance
 - surface wood and ground fuels

Fire Behaviour Prediction System

ullet

surface fuel consumption

Crown Fire Initiation and Spread

- probability of crown fire
- type of fire (crown v surface)

Daniels et al. 2023

Proactive Treatments Mitigate Fuel Loads

Proactive Treatments Reduce Predicted Fire Behaviour

Proactive Treatments Emulate Forest Development

Proactive Treatments Reduce Predicted Fire Behaviour

Key Findings

How do fuel treatments tame the flames?

- Treatments transform young dense forests toward mature forests
- Mitigate ladder and crown fuels, reduce chance of crown fire
- Shift predicted fire behaviour from crown to surface fire
- Increase resilience by reducing potential severe crown fire

Take Home Message

Our findings show proactive fuel treatments reduce chance of crown fire by half, increasing forest resilience in the wildland-urban interface in Whistler.

Thanks to our collaborators:

FUEL FOR THOUGHT: How Fuel Treatments Tame The Flames

Lori Daniels, Tessa Black, Matthew Broder, Fiona Landwehr, Caleb Loewen, Isaac Lowenthal Walsh, Daniel Skinner & Mike Stefanuk Centre for Wildfire Coexistence, Faculty of Forestry, University of British Columbia Vancouver

INTRODUCTION

QUESTIONS

- In the wildland-urban interface of Whistler, how do proactive treatments alter forest fuels and fire risk?
- What are proactive treatments?
- Remove subcanopy and some canopy trees
 Prune lower branches of retained trees
- Chip or pile and burn surface fuels

RESEARCH METHODS

FIELD METHODS

- Field data plots (n = 23)
- re Behavior Triangle
- Topography measurements:
 Location, elevation, slope angle, aspect
- Fuel measurements:
- All trees diameter >7.5 cm
 Canopy cover
- Surface wood and ground fuels
- Weather inputs to model:
 90th percentile weather for August: 29.6°C, 24 % RH, 13.1 km/h wind speed

COMPARISON OF FOREST FUELS

- · Classified fuel types based on forest structure
- · Statistically compared key attributes

PREDICTIVE MODELLING

- Canadian Fire Behaviour Prediction System
- Crown Fire Initiation and Spread model

KEY FINDINGS

HOW DO FUEL TREATMENTS TAME THE FLAMES?

Thinning treatments transform young dense forests to resemble mature forests and shift predicted fire behaviour from active crown fire to surface fire

Young untreated forests...

Are dense with short trees and low branches
Have abundant ladder and canopy fuels and the highest prediction of active crown fire (100%)

Mature treated forests...

- Have low tree density, tall trees, and high branches, with fewer canopy fuels
 Have the lowest prediction of active crown fire
- (27%) and highest chance of surface fire (55%)

Proactive fuel treatments...

- Emulate and accelerate forest development from young to mature structures
- Mitigate fuel loads and shift predicted fire behaviour from crown to surface fire
 Increase forest resilience by reducing potential for severe crown fires in future

TAKE HOME MESSAGE

Our findings show proactive fuel treatments reduce chance of crown fire by half, increasing forest resilience in the wildland urban interface of Whistler.

Thank you to our collaborators:

stermittent Crown Fin

Surface Fire

